Như vậy, điều kiện để 3 vectơ đồng phẳng trong không gian Oxyz là gì? Cách để chứng minh ba vectơ đồng phẳng như thế nào? chúng ta cùng tìm hiểu qua bài viết dưới đây.

Công thức tính góc trong không gian: Góc giữa hai đường thẳng

Trong không gian Oxyz, cho hai đường thẳng  $\large \Delta $ và  $\large \Delta' $ tương ứng có vectơ chỉ phương  $\large \overrightarrow{u}=(a;b;c) $ và  $\large \overrightarrow{u'}=(a';b';c') $. Khi đó:

$\large cos(\Delta ,\Delta ')=|cos(\overrightarrow{u},\overrightarrow{u'})|=\frac{|aa'+bb'+cc'|}{\sqrt{a^{2}+b^{2}+c^{2}}.\sqrt{a'^{2}+b'^{2}+c'^{2}}} $

Bài 5.22 trang 53 sgk toán 12/2 kết nối tri thức

Đường thẳng ∆ có vectơ chỉ phương là $\large \overrightarrow{u}=(-1;2;3)$

Mặt phẳng (P) có vectơ pháp tuyến là $\large \overrightarrow{n}=(1;1;1)$

$\large sin(\Delta ,(P))=\frac{|-1.1+2.1+3.1|}{\sqrt{(-1)^{2}+2^{2}+3^{2}}.\sqrt{1^{2}+1^{2}+1^{2}}}=\frac{4}{\sqrt{42}}$

Đăng ký ngay combo sổ tay kiến thức các môn học để nhận ưu đãi cực hấp dẫn từ vuihoc nhé!

Tích Vô Hướng, Tích Có Hướng Của Hai Vectơ trong không gian Oxyz và Ứng Dụng

Trong không gian với hệ tọa độ vuông góc Oxyz, tích vô hướng của hai vectơ (được định nghĩa giống như trong mặt phẳng), tích có hướng của hai vectơ (khái niệm không có trong mặt phẳng) được định nghĩa như sau (xem các ảnh dưới đây).

Bài 5.23 trang 53 sgk toán 12/2 kết nối tri thức

Gọi O là giao điểm của AC và BD. Suy ra O là trung điểm của AC, BD.

Vì các tam giác SAC, SBD đều cân tại S, SO là trung tuyến nên SO đồng thời là đường cao.

Suy ra SO ⊥ AC, SO ⊥ BD nên SO ⊥ (ABCD).

Vì ABCD là hình vuông cạnh 230 m nên OA = OB = OC = OD = $\large 115\sqrt{2}$.

Xét tam giác SOB vuông tại O, có: $\large SO=\sqrt{SB^{2}-OB^{2}}=\sqrt{219^{2}-(115\sqrt{2})^{2}}=7\sqrt{439}$.

Ta có: $\large A(-115\sqrt{2};0;0),B(0;-115\sqrt{2};0),C(115\sqrt{2};0;0),S(0;0;7\sqrt{439}) $

Ta có: $\large \overrightarrow{SA}=(-115\sqrt{2};0;-7\sqrt{439}) $, $\large \overrightarrow{SB}=(0;-115\sqrt{2};-7\sqrt{439}) $, $\large \overrightarrow{SC}=(115\sqrt{2};0;-7\sqrt{439}) $

Mặt phẳng (SAB) nhận: $\large \overrightarrow{n}=\frac{1}{5}[\overrightarrow{SA},\overrightarrow{SB}]=(-161\sqrt{878};-161\sqrt{878;5290})$ làm vectơ pháp tuyến.

Mặt phẳng (SBC) nhận: $\large \overrightarrow{n'}=\frac{1}{5}[\overrightarrow{SB},\overrightarrow{SC}]=(161\sqrt{878};-161\sqrt{878;5290})$ làm vectơ pháp tuyến.

Do đó: $\large cos((SAB),(SBC))=\frac{|-(161\sqrt{878})^{2}+(161\sqrt{878})^{2}+5290^{2}|}{\sqrt{(-161\sqrt{878})^{2}+(-161\sqrt{878})^{2}+5290^{2}}.\sqrt{(161\sqrt{878})^{2}+(-161\sqrt{878})^{2}+5290^{2}}}$

$\large =\frac{5290^{2}}{(161\sqrt{878})^{2}+(-161\sqrt{878})^{2}+5290^{2}}\approx 0,3807$

Vậy góc giữa hai mặt phẳng (SAB) và (SBC) khoảng 67,6°.

CÁC CÔNG THỨC DIỆN TÍCH, THỂ TÍCH CÓ LIÊN QUAN ĐẾN TÍCH VÔ HƯỚNG, TÍCH CÓ HƯỚNG

Nắm được các công thức này sẽ giúp học sinh lớp 12 học tốt chương phương pháp tọa độ trong không gian ở chương trình Hình học 12.

Ở các lớp dưới, các em đã biết cách tính góc trong hình học phẳng, vậy trong không gian, làm thế nào để tính góc giữa hai đường thẳng, giữa đường thẳng và mặt phẳng và góc giữa hai mặt phẳng. Theo dõi bài viết để biết công thức tính góc trong không gian toán 12 nhé!

Bài 5.20 trang 53 sgk toán 12/2 kết nối tri thức

Đường thẳng ∆1 có vectơ chỉ phương là:  $\large \overrightarrow{u_{1}}=(2;-1;3)$

Đường thẳng ∆2 có vectơ chỉ phương là:  $\large \overrightarrow{u_{2}}=(-1;1;2)$

$\large cos(\Delta _{1},\Delta _{2})=\frac{|2.(-1)+(-1).1+3.2|}{\sqrt{2^{2}+(-1)^{2}+3^{2}}.\sqrt{(-1)^{2}+1^{2}+2^{2}}}=\frac{3}{\sqrt{14}.\sqrt{6}}=\frac{\sqrt{21}}{14}$

Công thức tính góc trong không gian: Góc giữa đường thẳng và mặt phẳng

Trong không gian Oxyz cho đường thẳng  $\large \Delta $ có vectơ chỉ phương $\large \overrightarrow{u}=(a;b;c) $ và mặt phẳng (P) có vectơ pháp tuyến $\large \overrightarrow{n}=(A;B;C) $. Khi đó:

$\large sin(\Delta ,(P))=|cos(\overrightarrow{u},\overrightarrow{n})=\frac{|aA+bB+cC|}{\sqrt{a^{2}+b^{2}+c^{2}}.\sqrt{A^{2}+B^{2}+C^{2}}} $

Bài 5.24 trang 53 sgk toán 12/2 kết nối tri thức

a) Chọn hệ trục tọa độ như hình vẽ.

40 cm = 0,4 m, 44 cm = 0,44 m, 48 cm = 0,48 m.

Khi đó ta có A(0; 1; 0,4), B(1; 1; 0,44), C(1; 0; 0,48).

Có $\large \overrightarrow{AB}=(1;0;0,04)$

$\large \overrightarrow{AB}=\overrightarrow{DC}\Leftrightarrow \left\{\begin{matrix} 1-x_{D}=1 \\ -y_{D}=0 \\  0;48-z_{D}=0,04\\ \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_{D}=0 \\ y_{D}=0 \\  z_{D}=0,44\\ \end{matrix}\right.$

Vậy khoảng cách từ điểm D đến đáy bể là 44 cm.

b) Ta có đáy bể nằm trong mặt phẳng Oxy: z = 0 có vectơ pháp tuyến  $\large \overrightarrow{k}=(0;0;1)$.

Ta có:  $\large \overrightarrow{AB}=(1;0;0,04)$,  $\large \overrightarrow{AC}=(1;-1;0,08)$,

$\large [\overrightarrow{AB},\overrightarrow{AC}]=(0,04;-0,04;-1)$

Mặt phẳng (ABCD) đi qua A(0; 1; 0,4) và có vectơ pháp tuyến:  $\large \overrightarrow{n}=[\overrightarrow{AB},\overrightarrow{AC}]=(0,04;-0,04;-1)$ có phương trình là:

0,04x – 0,04(y – 1) – (z – 0,4) = 0 ⇔ 0,04x – 0,04y – z + 0,44 = 0.

Do đó góc giữa đáy bể và mặt phẳng nằm ngang chính là góc giữa mặt phẳng (ABCD) và mặt đáy.

$\large cos((ABCD),(Oxy))=\frac{|-1|}{\sqrt{1}.\sqrt{0,04^{2}+(-0,04)^{2}+(-1)^{2}}}=\frac{25}{\sqrt{627}}$

PAS VUIHOC – GIẢI PHÁP ÔN LUYỆN CÁ NHÂN HÓA

Khóa học online ĐẦU TIÊN VÀ DUY NHẤT:

⭐ Xây dựng lộ trình học từ mất gốc đến 27+

⭐ Chọn thầy cô, lớp, môn học theo sở thích

⭐ Tương tác trực tiếp hai chiều cùng thầy cô

⭐ Học đi học lại đến khi nào hiểu bài thì thôi

⭐ Rèn tips tricks giúp tăng tốc thời gian làm đề

⭐ Tặng full bộ tài liệu độc quyền trong quá trình học tập

Đăng ký học thử miễn phí ngay!!

Trên đây là toàn bộ bài học Công thức tính góc trong không gian toán 12. Hi vọng bài viết này sẽ giúp cho các bạn học sinh áp dụng công thức tính góc để tính góc giữa hai đường thẳng, góc giữa đường thẳng và mặt phẳng, góc giữa hai mặt phẳng trong không gian. Các bạn hãy truy cập nền tảng Vuihoc.vn để ôn tập kiến thức Toán 12 và đăng ký những khóa học bổ ích, hấp dẫn nhất nhé!

Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm

Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm toán 12

Ứng dụng hình học của tích phân trong giải bài tập toán 12

Công thức tính góc trong không gian: Góc giữa hai mặt phẳng

Trong không gian Oxyz, cho hai mặt phẳng (P) và (Q) tương ứng có các vectơ pháp tuyến $\large \overrightarrow{n}=(A;B;C)$ và $\large \overrightarrow{n'}=(A';B';C')$. Khi đó góc giữa (P) và (Q), kí hiệu là ((P),(Q)) được tính theo công thức:

$\large cos((P),(Q))=cos(\overrightarrow{n},\overrightarrow{n'})=\frac{|AA'+BB'+CC'|}{\sqrt{A^{2}+B^{2}+C^{2}}.\sqrt{A'^{2}+B'^{2}+C'^{2}}} $

Đăng ký ngay để được các thầy cô ôn tập kiến thức và xây dựng lộ trình ôn thi THPT Quốc gia sớm với khóa học PAS THPT!

Bài 5.21 trang 53 sgk toán 12/2 kết nối tri thức

Trục Oz có vectơ chỉ phương là: $\large \overrightarrow{k}=(0;0;1)$

Mặt phẳng (P) có vectơ pháp tuyến là: $\large \overrightarrow{n}=(1;2;-1)$

$\large sin(Oz,(P))=\frac{|0.1+0.2+1.(-1)|}{\sqrt{1}.\sqrt{1+2^{2}+(-1)^{2}}}=\frac{1}{\sqrt{6}}$